Math 335 Sample Problems

One notebook sized page of notes (one side)will be allowed on the test. No electronic devices allowed. You may work together on the sample problems - I encourage you to do that. The test will cover 4.5-4.7 and 5.2-5.8, 6.1. There may be homework problems on the test. The midterm is on Monday, February 3.

1. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{1}$ be defined by

$$
f(x, t)=\left\{\begin{array}{l}
\frac{\sin (x t)}{t} \text { if } t \neq 0, \\
x \text { if } t=0
\end{array}\right.
$$

Let

$$
g(x)=\int_{0}^{\pi / 2} f(x, t) d t
$$

Compute $g^{\prime}(x)$ and $g^{\prime}(0)$.
2. (a) Compute $\int_{x^{2}+y^{2}=1} \frac{-y d x+x d y}{x^{2}+y^{2}}$.
(b) Using part (a) and Green's theorem, compute $\int_{\frac{x^{2}}{4}+\frac{y^{2}}{9}=1} \frac{-y d x+x d y}{x^{2}+y^{2}}$.
3. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be continuously differentiable and assume $f(\theta)>0$. Use Green's theorem to prove that area of the region S, defined in polar coordiates by the inequalities

$$
\alpha \leq \theta \leq \beta, r \leq f(\theta),
$$

is given by

$$
A(S)=\frac{1}{2} \int_{\alpha}^{\beta} f^{2}(\theta) d \theta
$$

4. Suppose f is continuous on $[0, \infty)$ and $|x f(x)|<1$ for $x \geq 1$. Prove or give a counterexample to the statement that $\int_{1}^{\infty} f(x) d x$ converges.
5. Let C be the curve of intersection of $y+z=0$ and $x^{2}+y^{2}=a^{2}$ oriented in the counterclockwise direction when viewed from a point high on the z-axis. Use Stokes' theorem to compute the value of $\int_{C}(x z+1) d x+(y z+2 x) d y$.
6. Let

$$
\phi(x)=\int_{0}^{\pi} \cos (x \sin t) d t
$$

Prove that

$$
x \phi^{\prime \prime}(x)+\phi^{\prime}(x)+x \phi(x)=0 .
$$

7. (a) Prove that $\int_{C} \frac{-y d x+x d y}{x^{2}+y^{2}}$ is not independent of path on $\mathbf{R}^{2}-\mathbf{0}$.
(b) Prove that $\int_{C} \frac{x d x+y d y}{x^{2}+y^{2}}$ is independent of path on $\mathbf{R}^{2}-\mathbf{0}$. Find a function $f(x, y)$ on $\mathbf{R}^{2}-\mathbf{0}$ so that $\nabla f=\left(\frac{x}{x^{2}+y^{2}}, \frac{y}{x^{2}+y^{2}}\right)$.
8. Prove that $\int_{0}^{\infty} \cos x^{2} d x$ converges, but not absolutely.
9. Decide if the following integrals converge conditionally, converge absolutely, or diverge.
(a)

$$
\int_{-\infty}^{+\infty} x^{2} e^{-|x|} d x
$$

(b)

$$
\int_{0}^{\pi} \frac{d x}{(\cos x)^{\frac{2}{3}}}
$$

(c)

$$
\int_{1}^{\infty} \frac{\sin (1 / x)}{x} d x
$$

10. Let f and g be integrable on $[a, b]$ for every $b>a$.
(a) Prove that

$$
\left(\int_{a}^{b}|f g|\right)^{2} \leq \int_{a}^{b} f^{2} \int_{a}^{b} g^{2}
$$

You must give a proof of this. It is not proved in the text.
(b) Prove that if $\int_{a}^{\infty} f^{2}$ and $\int_{a}^{\infty} g^{2}$ converge then $\int_{a}^{\infty} f g$ converges absolutely.
11. Let $a_{n}=\log \left(\frac{n}{n+1}\right)$. Does $a_{n} \rightarrow 0$? Does the series $\sum_{1}^{\infty} a_{n}$ converge? If so, find its limit.
12. Let S be the surface (torus) obtained by rotating the circle $(x-2)^{2}+z^{2}=1$ around the z-axis. Compute the integral $\int_{S} \mathbf{F} \cdot \mathbf{n} d A$, where $\mathbf{F}=\left(x+\sin (y z), y+e^{x+z}, z-x^{2} \cos y\right)$.
13. Let $w(x)$ satisfy $w^{\prime \prime}(x)+w(x)=0, w(0)=0, w^{\prime}(0)=1$. Let $f(x)=\int_{0}^{x}(w(x-y)) h(y) d y$. Prove that

$$
f^{\prime \prime}(x)+f(x)=h(x), f(0)=0, f^{\prime}(0)=0 .
$$

14. We have covered the following:
(a) Green's theorem
(b) Surface area
(c) Divergence theorem
(d) Stokes' theorem
(e) Integrating vector derivatives
(f) Integrals dependent on a parameter
(g) Improper single and multiple integrals
(h) Introduction to infinite series.
15. There may be homework problems or example problems from the text on the midterm.
